The following C program, using recursion, performs a Depth First Search traversal. Depth-first search (DFS) is an algorithm for traversing or searching a tree, tree structure or graph. The concept of backtracking is used in DFS. In this program we are performing DFS on a binary tree. In DFS, the deepest and univisited node is visited and backtracks to it’s parent node if no siblings of that node exists.
Conditions: The DFS works on acyclic graph. DFS may fail if it enters a cycle. Care must be taken by not extending a path to a node if it already has.
Here is the source code of the C program to apply DFS on a binary tree recursively. The C program is successfully compiled and run on a Linux system. The program output is also shown below.
#include <stdio.h>
#include <stdlib.h>
struct node {
int a;
struct node *left;
struct node *right;
}
;
void generate(struct node **, int);
void DFS(struct node *);
void delete(struct node **);
int main() {
struct node *head = NULL;
int choice = 0, num, flag = 0, key;
do {
printf("\nEnter your choice:\n1. Insert\n2. Perform DFS Traversal\n3. Exit\nChoice: ");
scanf("%d", &choice);
switch(choice) {
case 1:
printf("Enter element to insert: ");
scanf("%d", &num);
generate(&head, num);
break;
case 2:
DFS(head);
break;
case 3:
delete(&head);
printf("Memory Cleared\nPROGRAM TERMINATED\n");
break;
default:
printf("Not a valid input, try again\n");
}
}
while (choice != 3);
return 0;
}
void generate(struct node **head, int num) {
struct node *temp = *head, *prev = *head;
if (*head == NULL) {
*head = (struct node *)malloc(sizeof(struct node));
(*head)->a = num;
(*head)->left = (*head)->right = NULL;
} else {
while (temp != NULL) {
if (num > temp->a) {
prev = temp;
temp = temp->right;
} else {
prev = temp;
temp = temp->left;
}
}
temp = (struct node *)malloc(sizeof(struct node));
temp->a = num;
if (num >= prev->a) {
prev->right = temp;
} else {
prev->left = temp;
}
}
}
void DFS(struct node *head) {
if (head) {
if (head->left) {
DFS(head->left);
}
if (head->right) {
DFS(head->right);
}
printf("%d ", head->a);
}
}
void delete(struct node **head) {
if (*head != NULL) {
if ((*head)->left) {
delete(&(*head)->left);
}
if ((*head)->right) {
delete(&(*head)->right);
}
free(*head);
}
}
Output
Enter your choice: 1. Insert 2. Perform DFS Traversal 3. Exit Choice: 1 Enter element to insert: 5 Enter your choice: 1. Insert 2. Perform DFS Traversal 3. Exit Choice: 1 Enter element to insert: 3 Enter your choice: 1. Insert 2. Perform DFS Traversal 3. Exit Choice: 1 Enter element to insert: 4 Enter your choice: 1. Insert 2. Perform DFS Traversal 3. Exit Choice: 1 Enter element to insert: 2 Enter your choice: 1. Insert 2. Perform DFS Traversal 3. Exit Choice: 1 Enter element to insert: 7 Enter your choice: 1. Insert 2. Perform DFS Traversal 3. Exit Choice: 1 Enter element to insert: 8 Enter your choice: 1. Insert 2. Perform DFS Traversal 3. Exit Choice: 1 Enter element to insert: 6 Enter your choice: 1. Insert 2. Perform DFS Traversal 3. Exit Choice: 2 2 4 3 6 8 7 5 Enter your choice: 1. Insert 2. Perform DFS Traversal 3. Exit Choice: 3 Memory Cleared PROGRAM TERMINATED