Topological sort is the ordering vertices of a directed, acyclic graph(DAG), so that if there is an arc from vertex i to vertex j, then i appears before j in the linear ordering.
C Program
#include<stdio.h>
#define MAX 200
int n,adj[MAX][MAX];
int front = -1,rear = -1,queue[MAX];
void main() {
int i,j = 0,k;
int topsort[MAX],indeg[MAX];
create_graph();
printf(“The adjacency matrix is:\n”);
display();
for (i=1;i<+n;i++) {
indeg[i]=indegree(i);
if(indeg[i]==0)
insert_queue(i);
}
while(front<=rear) {
k=delete_queue();
topsort[j++]=k;
for (i=1;i<=n;i++) {
if(adj[k][i]==1) {
adj[k][i]=0;
indeg[i]=indeg[i]-1;
if(indeg[i]==0)
insert_queue(i);
}
}
}
printf("Nodes after topological sorting are:\n");
for (i=0;i<=n;i++)
printf("%d",topsort[i]);
printf("\n");
}
create_graph() {
int i,max_edges,origin,destin;
printf("\n Enter number of vertices:");
scamf("%d",&n);
max_edges = n * (n - 1);
for (i = 1;i <= max_edges;i++) {
printf("\n Enter edge %d (00 to quit):",i);
scanf("%d%d",&origin,&destin);
if((origin == 0) && (destin == 0)) {
printf("Invalid edge!!\n");
i–;
} else
adj[origin][destin] = 1;
}
return;
}
display() {
int i,j;
for (i = 0;i <= n;i++) {
for (j = 1;jrear) {
printf(“Queue Underflow”);
return;
} else {
del_item = queue[front];
front = front + 1;
return del_item;
}
}
int indegree(int node) {
int i,in_deg = 0;
for (i = 1;i <= n;i++)
if(adj[i][node] == 1)
in_deg++;
returnin_deg;
}