Toggle navigation
Scanftree.com
Academic Tutorials
Automata
Data Structure
OS
Graph Theory
Microprocessor
Cryptography
Compiler Design
Computer Graphics
IPv4
Parallel Algorithm
Programming
Tutorials
ASP.NET MVC
C
C++
JAVA
C#
Python
Programs
C
C++
JAVA
Python
Database Concept
DBMS
SQL
SQLite
TSQL-MSSQL
Preparation
Syllabus
Gate
Interview
Technical
HR/PI
Gk/Aptitude
Gk
Aptitude
MCQ
C
JAVA
Networking
Miscellaneous
Calculator
Health
Math
Developers
Css/Html Maker
Cheat Sheets
SEO Tools
Other
Math Formulas
IFSC Codes
: Scanftree
math
formulas
Functions-Logarithm-Formulas
Algebra
Algebraic Equations
Complex Numbers
Product and Factoring
Set Identities
Sets of Numbers
Functions
Exponents Functions
Hyperbolic Functions
Logarithm Functions
Roots Functions
Trigonometry Functions
Analytic geometry
2D Lines
2D Triangles
3D Lines
3D Planes
Circle
Conic Sections
Derivatives and Limits
Common Derivatives
Higher-order Derivatives
Limits
Indefinite Integrals
Common Integrals
Exponential Integrals
Logarithmic Integrals
Rational Integrals
Trigonometric Integrals
Definite integrals
Exponential Integrals
Logarithmic Integrals
Rational Integrals
Trigonometric Integrals
Series formulas
Arithmetic and Geometric Series
Special Power Series
Taylor Series
Logarithm formulas:
\[ y = \log_a x \Longleftrightarrow a^y = x ~~(a, x >0 , a \ne 1)\] \[ \log_a 1 = 0\] \[ \log_a a = 1\] \[ \log_a (mn) = \log_a m + \log_a n\] \[ \log_a \frac{m}{n} = \log_a m - \log_a n\] \[ \log_a m^n = n \cdot \log_a m\] \[ \log_a m = \log_b m \cdot \log_a b\] \[ \log_a m = \frac{\log_b m}{\log_b a}\] \[ \log_a b = \frac{a}{\log_b a}\] \[ \log_a x = \frac{\ln a}{ \ln x} \]
Aptitude / Reasoning / Interview
Physical education & sports